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Abstract. We propose a technique of improving the dual estimates in nonconvex multiextremal 
problems of mathematical programming, by adding some additional constraints which are the 
consequences of the original constraints. This technique is used for the problems of finding the global 
minimum of polynomial functions, and extremal quadratic and boolean quadratic problems. In the 
article one ecological multiextremal problem and an algorithm for finding the dual estimate for it also 
considered. This algorithm is based upon a scheme of decomposition and nonsmooth optimization 
methods. 
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In this report  the general mathematical programming problem find: 

f *  = i n f  fo(x), X C E" ~ex - (1) 

subject to the constraints: 

f i(x)<~O, i E I  ; f l ( x ) = 0 ,  i ~ I  2 (2) 

is considered. 

Let  u be a vector of Lagrange multipliers and 

L(x ,  u) = fo(x) + ~ u i f ( x  ) 
iE[1CJ[ 2 

be the Lagrange function. 

On the set U = {u:u  i >10, i E I~} let us consider the function: 

= x nf L(x, . ) .  

The value ~ *  = sup,~v ~ (u )  is called the dual estimate for f* .  It is clear that for 
u E U 'tr(u)~<f* and consequently ,is, ~ f , ;  therefore,  this dual estimate is a 
lower estimate for f * .  In the nonconvex case the so-called "estimation gap" may 

-occur: 

A : =  f * - ~ * > O .  

*This paper was presented at the II. IIASA Workshop on Global Optimization, Sopron (Hungary), 
December 9-14, 1990. 
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One of the ways to diminish this gap consists in adding to the constraints in (2) 
formally new constraints which are consequences of the constraints (2). So, the 
set of feasible points of the problem (1) - (2)  is not changed, but the set of 
Lagrange variables is extended. In some cases the gap can be reduced to zero by 
this way. In this article some examples are considered to illustrate such an 
approach. 

1. The Global Minimization Problem for a Polynom 

Let  a (bounded-from-below) polynomial P(Xl, x 2 , . . .  ,xn) be given and let P* be 
the value of the polynomial at the global minimum point. 

By introducing new variables and making use of quadratic substitutions of the 
form: x~ = y~; xyx k = z/~ and so forth we can reduce the minimization problem for 
the polynomial P(x  1 . . . .  , xn)  to a quadratic extremal problem with constraints in 
form of equalities. The direct application of the dual estimate technique to this 
quadratic problem results in nontrivial estimates only in rare cases. But if we 
modify the quadratic problem by generating simple quadratic equalities of the 
quadratic problem variables and by adding these equalities to the constraints 
some interesting results can be obtained for the modified problem. 

T H E O R E M  1. The dual estimate for  the modi f ied  quadratic prob lem,  which is 

equivalent  to the prob lem o f  minimizat ion o f  the po lynomia l  P(x) = 
P ( x  I , xz , . . . , x n) equals P* i f f  the nonnegative po lynomia l  P 

(x 1 , x z , . . . , x n ) : = P ( x  1 , x 2 , . . . , x n ) - P *  can be represented as the sum  o f  

squares o f  other polynomials .  Particularly, f o r  n = 1 the dual estimate is exact. 

First, we give a more precise definition of the "modified quadratic problem" in 
Theorem 1 and an illustrative example. 

Let  P* > -oe. Then the highest degree Si of each of the variables x~ must be 
even. Let  S~ = 21~, i = 1 , . . . ,  n. Consider integer vectors a = (a  I . . . .  , a~} with 
non-negative elements and monomials of the type: 

R [ a l = x a ~ l . . . x ~  n, O<~a i<~1~, i = l , . . . n .  (3) 

Then one obtains a system of identity relations: 

for all 

R[a(1)]R[a ~2)] - R[aCa)]R[a (4)] = 0 (4) 

{a (1), a (2), a (3), a (4) } whenever 

0<~ a (1) + a ~2) = a ~3) + a (4~ <~S = {Si}7= ~ . 

Any P(x)  with the vector {Si}7= I = {21i)i~=1 of highest degrees can be written as a 
quadratic function of the variables R[a ~°] which has the form 
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P(x)  = L ( R ,  ,~) = ~ .  ci~R[a(i)]R[a (j)] 
G ]  

+ E AkZm,, (R[a(k~]R[ a(~] - R[a(m)]R[a('°], 
(k,  l, m ,  n) 

where R[a(°]R[a  ¢j~] are some representatives of monomials of type (3) the c~i are 
appropriate coefficients, the ~tklmn a r e  arbitrary multipliers at the left-hand side of 
(4). Alternatively, L ( R ,  A) can be considered as a Lagrange function of the 
modified quadratic optimization problem 

minimize K[R] = ~ .  cijR[a~i)]R[a ~j~] 
1,]  

subject to (4). This problem is used to obtain the dual estimate in theorem 1. The 
set of constraints (4) is redundant as a rule. 

EXAMPLE.  Let 

P(xl)  = x~ + axS1 + bx 2 + cx31 4- dx21 + e x  I " 

S~ = 6; l 1 = 3. The problem is to find the global minima of P(xl ) .  Enumerate the 
variables of the equivalent quadratic problem: 

• . 3 R[ll = x ~ ,  R [ 2 ]  = x~ = x 2 ,  R [ 3 ]  = x~ = x 3 . 

The modified quadratic extremal problem has the form: 

2 2 
minimize K(x  1 , X2, X 3 )  = X 3 + ax2x 3 + bx 2 + cx 3 + dx 2 + ex I (5) 

subject to the constraints 

2 
X 1 - -  X 2 = 0 ,  ( 6 )  

x l x  2 -  x 3 = 0 ,  (7) 
2 

x 2  - x l x 3  = 0 .  (8 )  

Note that the last equation (8) is unnecessary. The Lagrange function L(x ,  ,~) for 
problem (5)-(8)  has the form 

L ( x , A ) = K ( x  1 , x z , x B ) + A I ( x  ~ - x z ) + A z ( x a x  2 Xs)+A 2 - 3 ( x :  - x l x 3 ) .  

Let 

• ( A ) = i n f L ( x , A ) ;  ~ = d o m ~ ;  ~ * =  sup ~F(A), 
A E d o m x I  p 

and denote by A* the optimal vector A if it exists• Note that if b < 0 then dom q~12, 
W12(A1, A2)= ~(A1, A2,0) is empty so that the "unnecessary" equation (8) is 
necessary for finding the nontrivial dual lower bound W*. By using Theorem 1 it 
follows that q~* =minx1 P(xl ) .  Let ~ 0 C ~  denote the interior of ~.  If 1~ 0 is 
nonempty,  then it is a convex set, since 1~ 0 = {A0:L(x, A0) is positive definite on 
x}. Problem (5)-(8)  is equivalent to three "simplified" problems (I), (II), (III), 
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where (I): (5), (6), (7); (II): (5), (6), (8); (III): (5), (7), (8), Suppose each of 
the problems (I), (If), (III) has a single optimal vector of Lagrange multipliers: 
a, {a]  a l2} ,a , ,  2 =_ p ~- ' = /~3} '  h i l l  { 2 '  / ~ } "  A p p r o p r i a t e  v e c t o r s  h(1) = {h~ 1), 
h(211, 0}, h(2) = {h~ 2), 0, h~2)}, h(3) = {0, A~ 3), h~ 3)} can be arranged on a line L. 
The statement " L  A 12 ~ {Q}" is then equivalent to the statement "12"= min~ 
P(xO".  If L f3 120 is nonempty then the global minimum is unique. 

Proof of  Theorem 1. Let q~(A) = inf g L(R,  A) 12 = dom • and denote by Ft 0 the 
interior of 12. If L(R,  A0) is a positive definite quadratic function of the variables R 
then A ~ 120- If 12 is nonempty, then ~(A) is concave function on the convex set 
Ft. 

Let supxcdom ~, g2"(A)= air*. The proof of Theorem 1 is based on the following 
lemma. 

L E M M A  i (about translation). Let the polynomial P(z), z E E n, have the 
property that its quadratic dual estimate ~ equals min z P(z). Then for arbitrary 
h ~ E ~ the polynom Ph(Z) = P(z + h) possesses the same property. 

The proof of this lemma is published in [8]. It essentially uses sufficient complete- 
ness of the set of Equations (4). We shall use also the following simple lemma. 

L E M M A  2. Any linear form L( y) = Eki=l ciy e under the c o n d i t i o n  Eik=l C i = 0 can 
k n 

be expressed as Zu=I  cii(y i - yj) for some coefficents (cij}i.j= 1. 

Using Lemma 1 and Lemma 2, Theorem 1 will follow from the following result. 

T H E O R E M  2. Suppose that we have a polynomial P(z) = P(z 1 . . . .  , zn) with 
global minimum at the point z = O, and P(O) = O. Then the dual quadratic estimate 
satisfies qt* = 0 iff the polynom P(z) can be represented as the sum of  squares of  
other polynoms. 

Proof. (Necessity). Let ~* = 0. Then one can find A* E f~ such that L(R,  A*) 
is positive semidefinite and L(O, A*)=0.  But arbitrary positive semidefinite 
quadratic functions can be represented as sum of squares of linear functions. 
Substitute in the formula of the function L(R,  A*) represented in form of sum of 
squares instead of variables R[a]  equivalent monomials of the variables 
Z l , . . . ,  zn to obtain a representation of P(z) in the form of sum of squares of 
polynomials. 

(Sufficiency). Let P(z) be represented as a sum of squares of polynomials 
m P1 . . . . .  Pm: P(z) = Ei= 1 P~(z). Polynomials Pi(z), i = 1 , . . . ,  m, do not contain 

variable-free coefficients (if it were not the case, then P ( 0 ) >  0). Substituting 
instead of each monomial contained in the polynomials Pi(z), i = 1 , . . . ,  m, the 
corresponding c~R[a] one obtains a homogeneous positive semidefinite quadratic 
form /((R) of the vector R satisfying min /((R) = /((0) = 0. Consider the dif- 
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ference 

A ( R ) = K ( R ) - L ( R , 0 ) ;  ( A = 0 ) .  

The  sum of the coefficients of A(R) must be equal to zero, so by L e m m a  2 A(R) 
is represented as linear combination of the left sides of the constraints (4). The 

coefficients of  this linear form can be interpreted as Lagrange multipliers at 
corresponding constraints. So we obtain a vector of Lagrange multipliers A such 
that  L(R,  X) = / £ ( R ) ,  ~ ( A )  = 0. Theorem 2 is proved.  

Let  now min P(z) = P(z*) = P*. Consider polynomials Po(z) = P(z - z*) - P*; 
min Po(z) = P0(0) = 0. Using Lemma  1 and Theorem 2 we obtain the s ta tement  
of T h e o r e m  1. 

Unfor tunate ly  not every non-negative polynomial  of several variables can be 
represented  as the sum of squares of polynomials. This problem was investigated 

by Hilber t  in 1888 [2]. He  studied the homogeneous  polynomial  forms of even 
degree  m with n variables. Hilbert  showed that for n = 3, m i> 6 and n 1> 4, rn/> 4 

there exist non-negative forms which cannot be represented as the sum of squares 
of other  forms. 

Only for some general classes of forms this question is decided positively: 
• rn = 2, n is arbitrary (quadratic forms); 
• n = 2, rn is arbitrary even number  (two-variable forms or corresponding 

polynomials  of one variable); 
• m - -4 ,  n = 3 (biquadratic forms with three variables). 

E. Artin in 1927 (cf. [1]) gave a positive answer on the 17th problem of Hilbert:  
each non-negative rational function can be represented as a sum of squares of 
rat ional  functions. Using this result one can show that if P(z) is a non-negative 

polynomial ,  then there exists a positive polynomial  Po(z) such that Pl(z)= 
P(z)* Po(z) can be represented as a sum of squares of polynomials. But we do 
not know how to find Po(z) for P(z). 

2 .  T h e  P r o b l e m  o f  M i n i m i z i n g  a Q u a d r a t i c  F u n c t i o n  o n  the  

N o n - N e g a t i v e  O r t h a n t  

We consider the problem 

min [(Kx, x) + (c, x)]  ; x ,  c E E n , (9)  
x~>0 

where K is a symmetr ic  matrix of order  n. This problem is NP-hard if matrix K is 
not positive semidefinite (the problem is nonconvex).  The dual approach results 
in the trivial estimate - ~ .  Let  us modify the problem by adding constraints of the 
form xix / >i O. We showed in [9] that if c = 0 then the dual quadratic bound is 
exact for n ~< 4. 

The p rob lem (9) can be reduced by substitutions x i = y~, i = 1 , . . . ,  n, to the 
prob lem of global minimization a 4th degree polynomial.  Polya [4] proved the 
following theorem: 
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If the form F(x~, ,xn) is positive for x~>0, ET= 1 x i > 0 ,  then it can be 
represented as F =- G/H,  where G and H are forms with positive coefficients. In 
particular,  H can be taken in the form: H = (xx + • • • + xn) P for the appropriate  
P. This result illustrates a consequence of Art in 's  theorem: G(x)= F(x)H(x).  

) n After  substitutions x~ = y~, i = 1 . . . .  , n, G({yT}i=l)  is the sum of squares of 
polynomials.  

3. Nonconvex Quadratic Programming 

Let  us consider a problem: to find the minimum of Ko(x ) with respect to linear 

constraints l~(x) ~< 0, i = 1 , . . . ,  m. If Ko(x ) is nonconvex,  then we have the trivial 
dual bound ~ *  = -oo. In order  to obtain bet ter  bounds it is possible to generate 
the quadratic constraints by multiplying the pairs of linear constraints: f rom 

li(x ) <~ O, l(x)<~ 0 we get li(x)lj(x ) >~ O. Additional quadratic constraints allow us 

to affect the quadratic part  of  the Lagrange function. It  is proved in [9] that the 
corresponding dual estimate for the modified quadratic problem is not worse than 

those which we can obtain by the linearization of the concave part  of Ko(x ) 
per fo rmed  by Parda los -Rosen  [3]. 

4. The Problem of Finding the Maximum Weight Independent Subset of 
Vertices in a Graph 

Many boolean problems can be reduced to quadratic extremal  problems.  The dual 
est imates for quadratic boolean problems was investigated in [6]. Let  us consider 
an interesting example of quadratic dual bounds application to Boolean optimiza- 
tion problem.  Let  G(V, E) be a nondireeted graph with vertex set V = (1 . . . .  , n} 
and edge set E = {(i, j )}.  A stable (or independent)  set in the graph G(V, E) is a 
set S _C V of vertices, any two of which are not adjacent. Let  w i > 0 be the weight 

of  ver tex i. The problem can be written as find 

f*  = max 2 WiX i (10)  
i = 1  

subject to 

x,x~<~l, ( i , j )  E E ,  (11) 

x i E { 0 , 1  } ,  i = l , . . . , n .  (12) 

This p rob lem is NP-complete .  Usually the linear bounds are replaced by 0 ~< x~ ~< 
1, i = 1 , . . . ,  n, when branch and bound algorithms are applied. By reducing 
(10) - (12)  to a quadratic problem 

m a x ~ w i x  i s.t. x i x j = O ,  ( i , j ) ~ E ;  x ~ - x i : O  , i = 1  . . . . .  n, 
i = 1  

we can use dual quadratic bounds. Let ~ *  = sup,E~ xt,(u), where 
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• (u) = inf L(x, u), 

L ( x ,  , )  = - w,x, + 2 u,,x,x, + - x , )  . 
i=1  (i , j)~E j = l  

Lovasz [10], by using specific methods of the theory of coding, established such 
an upper bound for f*:  

O(G, w)=max Z ~ b  u, 
(i,j)GE 

where {b~j}~j=x are symmetric positive semidefinite matrices, 2i~_1 b,  <~ 1 and 
b u = 0  for ( i , j )  E E .  

This estimate is not worse than the linear one (see [9]). It has been shown in [9] 
that our estimate satisfies ~*  = - O ( G ,  w). Several numerical experiments have 
been performed by solving maximum weighted stable set problems. In those 
experiments the average value of (l~]*-f*)/f* was about 3% (the linear 
relative error was about 25%). Due to this fact, the number of branches necessary 
to find the optimum was reduced drastically [9]. 

5. A Practical Ecological Problem 

The practical significance of the problem of refining industrial water sinks is 
undoubted. One of the important goals in this area is an optimal distribution of 
costs for water refining among the enterprises whose sinks come to the same river. 
The mathematical model of the corresponding nonlinear distribution problem is 
the following: find 

S N 

F * = m i n ~ ' ~  E A k i x 2 ~ i ;  Aki>~O; 0~<Aki< I ,  Vki (13) 
k - 1  i=1  

N 

P ~ ( x ) = ~ ] x k i ,  f o r V k = l , S  (14) 
i - 1  

S N 

Tj(x) = 2 ~', dk,jxki ~<bj, fo rV  j = 1, M (15) 
k = l  i=1  

d- 
O ~< x~i ~< xki ~ xki or x~i = 0 for V(k, i) (16) 

(here the index k denotes a sink, i is an index of an active technological 
purification scheme, j is an index of admixture, xki means the part of water 
volume of sink k that is refining by scheme i, and the constraints (15) give an 
upper limit for the amount of admixtures is control points). 

For solving this multiextremal problem we used the method of dual estimates 
for the constraints (15). The inner problem of determining O(A) was solved by the 
dynamic programming using the constraints (14), (16). The outer problem of 
max4,(A) on A >/0 is solved by a subgradient-type method with dilatation of space 
in the direction of the difference of two sequential subgradients [5]. The approxi- 
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mate solution vector {xki } is computed by a special heuristic procedure,  after 
getting A*. The corresponding algorithm was implemented by a collaborator of 
our  Institute, Tukalevski S.L. on a personal computer  PC-AT 286. His program 
solves practical-size problems (k = 1, 44; i = 1, 7; j = 1, 9) for about 60 minutes. 

6. Final R e m a r k s  

The technique of dual quadratic estimates gives us a tool to obtain precise dual 
estimates for some classes of nonconvex and boolean problems. In other cases we 
hope to get bet ter  lower bounds than the bounds obtained by using the linear 
programming models. For solving the outer problems maximize ~(A),  A C f~, we 
used in practical calculations with success the subgradient methods of nondifferen- 
tiable optimization with space dilatation [5]. Some details of such experiments are 
published in [9]. 
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